Section A

Answer all questions in this section
An exit sign is shown below. The sign is made from 6 mm thick acrylic.

A1 Complete the full size isometric view of the exit sign in the space provided to the right by drawing
(a) the outer shape of the sign
[7]
(b) the thickness of the sign
[2]

A2 The EXIT lettering is shown on the grid below. The dots on the grid are 5 mm apart.

Complete the EXIT sign by adding the missing letters on the isometric view.

A3 A sign forbidding the taking of photographs is shown below.

(a) Complete the half size view of the sign in the space provided to the right by drawing
(i) the outer border with diagonal bar
$[6]$
$[4]$
(ii) the camera image.

The sign will be made in two parts as shown below.

Part A:
The outer border with diagonal bar is made from 3 mm thick red acrylic and goes in front of the backboard.

Part B:
The backboard has a black image on white 3 mm thick acrylic and goes behind Part A.
(b) Another backboard is needed for a 'NO FOOD OR DRINK' sign.

Design a suitable image for the backboard in the circle provided.

Section B

Answer either question B4 or B5

B4 An isometric view of a litter bin is shown below.

(a) Complete the orthographic views of the litter bin to a scale of $1: 10$.
[13]
front view
side view
(c) The image to the right has been produced using Computer Aided Design (CAD).
(i) State two advantages of using CAD to produce the image.

1 ..
\qquad
(ii) A vinyl self-adhesive sticker of the image is to be made using Computer Aided Manufacturing (CAM).

State one suitable CAM machine for making the sticker.
(b) The litter bin has a cylindrical steel liner inside which can be removed when emptying the bin.

Complete the pictorial view of the liner below by adding the top ellipse.

(iii) The manufactured sticker is to be positioned on the front face of the litter bin below the opening.

State the maximum width \& height of the sticker so that it can fit into the space available

Width
Height \qquad [2]

| $\begin{array}{l}\text { For } \\ \text { Examiner's } \\ \text { use }\end{array}$ |
| :--- | [2]

 \square

B5 A cardboard leaflet holder is shown below.

(a) Complete the development (net) of the leaflet holder to a scale of 1:2.

(b) Complete the table below to show one tool or item of equipment you would use to produce a prototype of the leaflet development (net).

Process	Tool/item of equipment
Marking out the development (net) on card	
Scoring the fold lines	
Cutting out the development (net)	

(c) The leaflet holders are to be produced in quantities of 5000 .
(i) State a suitable adhesive for joining the development (net) together.

Explain one advantage of using a to manufacture the developments (nets).
...
..

Another leaflet holder is shown to the right.
The leaflet holder is made from 15 mm thick MDF.

Base	Sides $\times 2$	Back	Front

(d) To a scale of 1:3, complete the table by drawing the parts needed to make the leaflet holder.

